
Common Component Architecture

http://www.cca-forum.org

Rob Armstrong
rob@sandia.gov

http://www.cca-forum.org/
http://www.cca-forum.org/

CCA Motivation

Desire to build Science Applications by hooking
together drag-N-drop components.

DOE Common Component Architecture provides a
mechanism for interoperability of high performance
components developed by many different groups
in different languages or frameworks.

Existing Component Architecture Standards such as
CORBA, Java Beans, and COM do not provide support for
parallel components.

sec110-6 10 -4
10

-1

CORBA/JavaCCAMPI

Latency
between
components

21st Century Application

Discretization

Algebraic Solvers

Parallel I/O

Grids

Data Reduction

Physics Modules

Optimization

Derivative Computation

Collaboration

Diagnostics

Steering

Visualization

Adaptive Solution

Picture courtesy of
Lois Curfman McInnes, ANL

Who are we?
• Researchers in the HP components field that

are dedicated to forming an open standard for
HP components.
• addressing the concerns of HPC.

• Originated from DOE�s DOE2K program
• has its place in ASCI: Software Integration Curve.
• participation from universities.

CCA Active Participants *

• Dennis Gannon (Indiana U)
• Randall Bramley (Cal Tech)
• Gary Kumfert, Scott Kohn, Tom Epperly (Livermore)
• Craig Rasmussen, Kate Keahey (Los Alamos)
• Rob Armstrong, Ben Allan, Jaideep Ray (Sandia)
• David Bernholdt, Jim Kohl (Oak Ridge)
• Lois McInnes, Paul Hovland, Lori Freitag (Argonne)
• Steve Parker (U Utah)
• Jarek Nieplocha (Pacific Northwest Labs)
• Robert Clay, Lee Taylor (Terascale)

* Send "subscribe cca-forum" to major-domo@z.ca.sandia.gov to join CCA mailing list

mailto:major-domo@z.ca.sandia.gov

The Requirements for HP
Component Architecture

• Simple/Flexible
• to adopt
• to understand
• to use

• Support a composition mechanism that does not
impede high-performance component interactions.

• Permits the SPMD paradigm in component form.
• Meant to live with and rely on other commodity

component frameworks to provide services ...
• (e.g. JavaBeans, CCM, ...).

CCA is a component architecture
that doesn't dictate frameworks or
runtime
• We are trying to create components that are

usable under a variety of frameworks;
• We are not making a new framework

implementation.
• provide a means for discovering interfaces,

similar to IUnknown.
• specifically exclude how the components are

linked, that is the job of a framework.
• provide language-independent means for

creating components from existing and future
languages.

What have we come up with?
" Scientific IDL spec.

� provides language
interoperability only - not
part of the component
arch. per se.

� introspection.
" Metaphor from visual

programming (e.g. AVS)
� instead of data-flow, ports

are linked with interfaces
� Provides/Uses design

pattern
� 0.5 CCA specification:

http://www.cca-forum.org

ComponentComponent

ComponentComponent

ComponentComponent

Flow Executive

Ports

Link

http://www.cca-forum.org/

Port model hooks up an interface
from one component to another

Port *o=
svc->getPort("Target Port");

Source
Component

int x;

y = bar(3);
x = o->foo(3.15)

float y; Output Port
int
foo(float)float
bar(int)

Target
Component

Input Port
int
foo(float)float
bar(int)

Flub(float)
dub(int)

Data Flow Analogue:
Output Port == Uses Port
Input Port == Provides Port

Ports preserve the high-perf. of direct
connections plus versatility of
distributed object systems
" Allows for directly connected interfaces: the next

component is a few function calls away (w/ SIDL).

" Adapters will create network-distributed objects out of
the same components without altering them.

Component1Component1 Component2Component2
Provides
/
Uses
Port

Component1Component1 Component2Component2

Uses
Port

Provides
Port

Network

Generalized ports and the
provides/uses design pattern for
coupling components

Component 1 Component 2

CCAServices
2

CCAServices

4

registerUsesPort("A")1
addProvidesPort(,"A")

= getPort("A")

3

Port

Port

Port

Port

Example: connectable components

CCA concept of SCMD (SPMD HPC)
components

MPI application using CCA for interaction between
components A and B within the same address space

Adaptive mesh
component
written by user1

A

B B

Process

Direct
Connection

supplied by
framework at

compile/runtime

A A A

B B

Proc1 Proc2 Proc3 etc...
MPI

MPI

Solver component
written by user2

CCA Collective Port Modularizes
Proc/Data Decomposition

Combining previous parallel component with a
second parallel component in a different framework

Container composed of
ESI and

Explicit Stencil
components

parallel
Viz component

collective port
connecting M proc�s
with N proc�s

A Simple example app

A little less simple

Its not that simple: detailed standards
for HPC components are being
worked out• Scientific IDL

-interfaces/lang. Interoperability for HP Computing
• Scott Kohn (LLL: skohn@llnl.gov)

• Network-distributed components
- line protocols, inter-framework compat. std's

• Dennis Gannon (UI: gannon@cs.indiana.edu),
Gary Kumfert (LLL: kumfert@esaki.llnl.gov)

• In-Memory Central Data Component
-structured/unstructured/particle grid data std's

• Lori Freitag(ANL: freitag@mcs.anl.gov)
• M processor to N Processor communication

-reparitioning, inter-parallel program comm. std's
• Jim Kohl (ORNL: kohlja@ornl.gov)

HPC Morphology: Big Central Data
with numerical code modules that
operate on it.
• Big Central Data Thing (BCDT) does R & T:

• representation
• proc. decomposed, present interface that abstracts data ...

• transmission
• proc. re-decomposition, interpolation, ...

• Numerical modules
• intimately aware of BCDT, produce the answer

• CCA Version of these:
• representation: freitag@mcs.anl.com
• transmission: kohlja@ornl.gov

The devil in the nitty details ...
• "C++ is great as long as you stay away from ..."

• templates, operator overloading?
• we (Rob, maybe Ben & Jaideep) think that

templates are part of the language (e.g.STL)
• memory

• force everyone to use your version of smart
pointers?

• Using C++ arcanity in a standard will condemn
everyone to using it.

• recent controversy over exceptions in the CCA.
• SIDL will save us.

Python will save us ...

Where do you fit in?

• CCA does not pretend to be experts in all
numerical algorithms, just provide a standard
way to exchange component capability.

• Medium of exchange: interfaces
• ESI has made headway toward defining interfaces

for their realm
• need numerics experts to define them for various

fields other than ESI
• optimization
• nonlinear methods
• symbolic and �automatic� methods
• ?

Boneyard: End of talk

CUMULVS
(Tcl/TK)

Process Parallel application

MPI

S

V

M

MPIMPI

Mesh
Stencil
solver
VIZ

S
V

M

Components

Java
GUI

(sockets/strings)

(PVM)

Sketch of
HPC application

Scientific IDL provides OO
interoperability to C, C++, Java,
Python, Fortran 77/90

Q Follows a Java-like interface model that will “glue”
languages together with a minimum performance hit

; expected overhead: 2-3 virtual function calls
Q IDL interoperability library supports interface

reflection
; Necessary for run-time discovery of objects by frameworks
; Allows interfaces to be “recognized” by the framework

without having specific advanced knowledge of active
components

Language interoperability is a critical
first step towards software
interoperability

" Software re-use is often hampered by language barriers
" DOE labs use many languages (f77, f90, C, C++, Java, Python)
" can be difficult for some languages to call others (f77 to C++)

" We are developing IDL technology for interoperability
" interface definition language (IDL) describes calling interface
" tools automatically generate code to �glue� languages

C

C++

f77

f90

Python

Java

IDL

A. Cleary, S. Kohn, S. Smith, B. Smolinski,
Language Interoperability Mechanisms for
High-Performance Scientific Applications,
SIAM Interoperability Conference, 1998.

IDL specification for the SMG structured
multigrid preconditioner from hypre
package hypre {

class stencil {
static stencil NewStencil(in int dim, in int size);
int SetStencilElement(in int index, in array<int> offset);

};
class grid {

static grid NewGrid(in mpi_com com, in int dimension);
int SetGridExtents(inout array<int> lower, array<int> upper);

};
class vector {

static vector NewVector(in mpi_com, in grid g, in stencil s);
int SetVectorBoxValues(/* long argument list omitted */);

};
class matrix { /* matrix member functions omitted */ };
class smg_solver {

int Setup(inout matrix A, inout vector b, inout vector x);
int Solve(inout matrix A, inout vector b, inout vector x);

};
);

User applications can now invoke
hypre routines from both C and
Fortran 77

C Test Code Fortran 77 Test Code

integer b, x
integer A
integer smg_solver

b = hypre_vector_NewVector(com, grid, stencil)
...
x = hypre_vector_NewVector(com, grid, stencil)
...
A = hypre_matrix_NewMatrix(com, grid, stencil)
...

smg_solver = hypre_smg_solver_new()
call hypre_smg_solver_SetMaxIter(smg_solver, 10)
call hypre_smg_solver_Solve(smg_solver, A, b, x)
call hypre_smg_solver_Finalize(smg_solver)

hypre_vector b, x;
hypre_matrix A;
hypre_smg_solver smg_solver;

b = hypre_vector_NewVector(com, grid, stencil);
...
x = hypre_vector_NewVector(com, grid, stencil);
...
A = hypre_matrix_NewMatrix(com, grid, stencil);
...

smg_solver = hypre_smg_solver_new();
hypre_smg_solver_SetMaxIter(smg_solver, 10);
hypre_smg_solver_Solve(smg_solver, &A, &b, &x);
hypre_smg_solver_Finalize(smg_solver);

The end user is completely unaware that IDL tools were used

Where are we?
Details of the CCA specification ...
• Overall: http://www.cca-forum.org
• draft Port spec in beta stage:

http://www.cca-forum.org/port-spec
• draft IDL spec in RFC stage:

http://www.llnl.gov/CASC/babel
• CCA SCMD Demo applet & plug-in:

coming soon ...
• Multiple test codes already exist.

Where are we going?

" Producing components and interface standards that people
want to use:

Eqn solver (ESI)
MxN redecomposition interface and implementation
Data Decomp./Load balancing components
Component parameters
Component documentation
Component constraints/hints for data decomposition

Other domain-specific components and interfaces

" Experiment with the architecture.

CCA Reference Framework
(SPMD Components Exist)

Framework GUI
running on 9 Processors
CPlant

Visualization

CCA Distributed Object example

Bumping up the level of component
abstraction

• Meta-components
• viewed only in terms of the mechanisms for

component composition.
• component connection mechanisms abstracted

Design
pattern

Component Mill
Meta-Component Model

to Java Bean

to CCA

Metacomponents free the
programmer from a specific
Component Architecure
• Programmer is not strapped to a specific CA

• Just needs to provide an adaptor to a CA supported
by ASIA.

• Allows design decisions to be put off until
deployment

• Does not free the programmer from user
requirements
• Need to understand the user domain
• Need to understand where you fit in the big picture
• Need to understand ASIA mechanics.

Scientific IDL provides OO
interoperability to C, C++, Java,
Python, Fortran 77/90

• Follows a Java-like interface model that will
�glue� languages together with a minimum
performance hit
• expected overhead: ~2-3 virtual function calls

• IDL interoperability library supports interface
introspection
• Necessary for run-time discovery of objects by

frameworks
• http://www.llnl.gov/CASC/babel

CCA compliant VPL that runs in a web browser
in full-up SPMD Fashion

The Builder for a CCA reference implementation. These
are SPMD parallel CCA 1.0 compliant components. Each
component seen in the Builder is replicated on each of
the participating processors. The red lines represent
interface connections between components within a
processor. All communication necessary to the solution
are done between peer components.

The visualization is done through the Eyes component
shown above. This implements the CCA Collective Port
through the Oak Ridge CUMULVS facility. The Collective
Port's purpose is to assemble the partial data from the
participating processors and send them to a single point to
be visualized. The rendering here is the solution to
Laplace's equation.

An IDL compiler automatically generates
�glue� code for supported languages

IDL Compiler

IDL Interface
Description

Stub
Glue Code

Skeleton
Glue Code

Library
Language

Language Mappings
Compiler Details

IDL Database

wraps library
implementation

(e.g. code written in C)

IDL

Caller
Language

currently C and f77-
C++, Java soon

called by
library user

Ports can be used to characterize
potential links to other components
• Each CCA Component has

• A list of �input� Ports where
• An input Port defines an interface to

services provided by the component.
• A list of �output� Ports where

• An output Port is the interface to a
set of services required by the
component.

• Other �self-identification�
features

• allow component containers to
probe the component properties,
ParameterPort.

Server
InputPort

Client OutputPort

Where are we going?

�Solving MxN problem

� Reference implementation
of CCA with Equation Solver
Interface ESI component.

�experiments with the
architecture.

Programmer can create a new Port
by tying methods to a Port

(3) Connect

components

Port

Port

Pea

Pod

User-
created Port

port

(1) Add pea to
pod

component (2) Create input and
output port objects
via introspection

Conclusions
• Philosophy: Not trying to �own the world.�

Trying to provide a �coin-of-the-realm� -- a
medium of exchange -- that promotes an
HPC software economy.

• Overall: http://www.acl.lanl.gov/cca-forum
• Draft Port spec in RFC stage:

http://z.ca.sandia.gov/~cca-forum/gport-spec
• Draft IDL spec in RFC stage:

http://www.llnl.gov/CASC/babel
• CCA Demo applet & plug-in:

http://z.ca.sandia.gov/~cca-forum/cca-demo

Language interoperability is a critical
first step towards software
interoperability

9 Software re-use is often hampered by language barriers
l DOE labs use many languages (f77, f90, C, C++, Java, Python)
l can be difficult for some languages to call others (f77 to C++)

9 We are developing IDL technology for interoperability
l interface definition language (IDL) describes calling interface
l tools automatically generate code to �glue� languages

C

C++

f77

f90

Python

Java

IDL

A. Cleary, S. Kohn, S. Smith, B. Smolinski,
Language Interoperability Mechanisms for
High-Performance Scientific Applications,
SIAM Interoperability Conference, 1998.

IDL specification for the SMG structured
multigrid preconditioner from hypre
package hypre {

class stencil {
static stencil NewStencil(in int dim, in int size);
int SetStencilElement(in int index, in array<int> offset);

};
class grid {

static grid NewGrid(in mpi_com com, in int dimension);
int SetGridExtents(inout array<int> lower, array<int> upper);

};
class vector {

static vector NewVector(in mpi_com, in grid g, in stencil s);
int SetVectorBoxValues(/* long argument list omitted */);

};
class matrix { /* matrix member functions omitted */ };
class smg_solver {

int Setup(inout matrix A, inout vector b, inout vector x);
int Solve(inout matrix A, inout vector b, inout vector x);

};
);

Common Component Architecture Toolkit
CCAT Service Architecture

CCA Components
Directory
Service

LDAP WebDav files

Component Specifications
and Installation Info

- XML based component schema

Registry
Service

Uses Port-
a point of call
to a provider

Provides Ports-
public interfaces

to provided
functions

A Component can be:
- A Desktop tool like Matlab or Python.
- A large remote parallel application
- An encapsulated remote instrument
- A data archive or database
- ...

Live component instances
- ComponentID registry

Dynamic component instance
creation and port connections

- enable on-the-fly and nested
networks

Create &
Connect

CCAT Components are distributed and
executed over wide area Grids.

Event
Service

Corba
Events

Jini
Events

JNDI
Events

Grid
Events

Component API to external
event services

- simple xml event schemaCCAT

NASA IPG & NCSA Grids

Globus - Corba - Legion - ...

Distributed Object Framework Using
CCA

Equation Solver Interface framework and the
Cumulvs Computational Steering framework
connected using CCA ports.

CCAT � Indiana CCA Toolkit: including event
service, component directory, dynamic creation
and linking. Running over Grid resources

CCAT

NASA IPG & NCSA Grids

Globus - Corba - Legion - ...

General Information: www.acl.lanl.gov/cca-forum
CCA spec in RFC stage, version 1.0 by Dec�99

http://z.ca.sandia.gov/~cca-forum/port-spec

Who are we?
• Researchers in the HP components field that

are dedicated to forming an open standard for
HP components.
• addressing the concerns of HPC.

• Originated from DOE�s DOE2K program
• has its place in ASCI: Software Integration Curve.
• participation from universities.

Container classes will orchestrate
components data on which they
depend

Calc go()
setup()

Calc go()
setup()

Steering/Vis go()
setup()

Amorphous
Data Store

go()

setup()

Container class gives access to
common data and sequences
components ...

• Container is itself a
component (complies
with the object model).

• Setup() means setup() its
constituents.

• Go() means run go() on
its constituents.

component go()
setup()

component go()
setup()

component go()
setup()

Amorphous
Data Store

go()

setup()

Containers can have a data context
...

go()

setup()

compone
nt go()

setu
p()

compone
nt go()

setu
p()

compone
nt go()

setu
p()

Amorpho
us Data

Store

go()

setup()

compone
nt go()

setu
p()

compone
nt go()

setu
p()

compone
nt go()

setu
p()

Amorpho
us Data

Store

go()

setup()

compone
nt go()

setu
p()

compone
nt go()

setu
p()

compone
nt go()

setu
p()

Amorpho
us Data

Store

go()

setup()

Amorphous
Data Store

10-5 s 1 s10-1 s10-2 s10-3 s10-4 s

DOE apps

CCA/ESI/...

Globus/Legion

CORBA/DCOM/...

Latency Requirements/Capabilities

Commercial
Distributed Object

Systems

DOE
Distributed Object

Systems

DOE Applications
Interactive apps

None Available
None Planned

DOE SimulationsParallel
Applications

 Web Search Engine

HP Component Architecture meets a
critical DOE need that is not and will not

be addressed by Silicon Valley.

DOE HPC &
Dist. Object
Systems

The problem is a lack of
software integration.
• Designers and analysts will increasingly need access

to complex computing tools and resources
• Computing resources are becoming more complex to

manage
• evolving systems present a moving target
• heterogeneous, distributed computing is becoming the norm
• portable, time-resistant solutions are needed

• Application components and tools are increasing in
complexity

• users need abstractions that partition their domain from
other users

• application requirements drive the need to move toward an
inter-lab component-sharing model

The problem with existing
Component Architectures
• Overall:

• hi-latency connection is OK for loosely-coupled
app�s: network OK for component composition

• not OK for high-performance app�s.
• Specifics

• JavaBeans: composition only by notifier/listener.
• COM: no real interoperability, not vendor neutral.
• CORBA2: no component model.
• CORBA3 components: OK but complicated, only

for loosely-coupled app�s.
• Seek to supplement existing CA�s with an

HP add-on.

No plan for world domination...
• Not organizing

complexity top-
down.

• Provide an
organizing principle
(medium of
exchange).

• believe in Adam
Smith�s invisible
hand ...

	Common Component Architecture
	21st Century Application
	Who are we?
	CCA Active Participants *
	The Requirements for HP Component Architecture
	CCA is a component architecture that doesn't dictate frameworks or runtime
	What have we come up with?
	Port model hooks up an interface from one component to another
	Ports preserve the high-perf. of direct connections plus versatility of distributed object systems
	Generalized ports and the provides/uses design pattern for coupling components
	Example: connectable components
	CCA concept of SCMD (SPMD HPC) components
	CCA Collective Port Modularizes Proc/Data Decomposition
	A Simple example app
	A little less simple
	Its not that simple: detailed standards for HPC components are being worked out
	HPC Morphology: Big Central Data with numerical code modules that operate on it.
	The devil in the nitty details ...
	Python will save us ...
	Where do you fit in?
	Boneyard: End of talk
	Sketch ofHPC application
	Language interoperability is a critical first step towards software interoperability
	IDL specification for the SMG structured multigrid preconditioner from hypre
	User applications can now invoke hypre routines from both C and Fortran 77
	Where are we? Details of the CCA specification ...
	Where are we going?
	CCA Reference Framework(SPMD Components Exist)
	CCA Distributed Object example
	Bumping up the level of component abstraction
	Metacomponents free the programmer from a specific Component Architecure
	
	An IDL compiler automatically generates ?glue? code for supported languages
	Ports can be used to characterize potential links to other components
	Where are we going?
	Programmer can create a new Port by tying methods to a Port
	Conclusions
	Language interoperability is a critical first step towards software interoperability
	IDL specification for the SMG structured multigrid preconditioner from hypre
	Distributed Object Framework Using CCA
	Who are we?
	Container classes will orchestrate components data on which they depend
	Container class gives access to common data and sequences components ...
	Containers can have a data context ...
	The problem is a lack of software integration.
	The problem with existing Component Architectures
	No plan for world domination...

